Mañé’s Theorem for entire functions and its applications

Masashi Kisaka

Graduate School of Human and Environmental Studies, Kyoto University, Yoshida
Nihonmatsu-Cho, Sakyo-Ku, Kyoto, 606-8501, Japan [kisaka@math.h.kyoto-u.ac.jp]

2000 Mathematics Subject Classification. 58F23, 30D05

f is called semi-hyperbolic at a point x in the Julia set J_f of f if there exists a
neighborhood U of x and an $N \in \mathbb{N}$ such that for any connected component V of
$f^{-n}(U)$ ($\forall n$), $f^n|_V : V \to U$ satisfies

$$\text{deg}(f^n|_V : V \to U) \leq N.$$

In the case that f is transcendental, we add the following property:

$$f^n|_V : V \to U \text{ is proper for every } V.$$

Mañé’s Theorem for rational functions ([2]) asserts that if f is a rational function
and $x \in J_f$ satisfies

$$x \notin \bigcup_{c \in \text{Rec} \cap J_f} \omega(c) \cup \{\text{parabolic periodic points}\},$$

where $\text{Rec} = \{\text{recurrent critical points}\}$, then f is semi-hyperbolic at $x \in J_f$.
Actually the converse of this theorem is also true. On the other hand, in the case
that f is transcendental, a new obstruction for semi-hyperbolicity is known ([1]).
In this talk, we show a necessary and sufficient condition for semi-hyperbolicity for
an entire function f. Also we show some results on measure theoretical properties
of the dynamics of (transcendental) entire functions as an application.