Stabilizers and orbits of smooth functions

Sergiy Maksymenko

Topology dept., Institute of Mathematics, NAS of Ukraine, Tereshchenkiivs'ka str., 3, Kyiv, 01601, Ukraine [maks@imath.kiev.ua]

2000 Mathematics Subject Classification. 32S20, 57R70, 58B05

Let M be a smooth connected compact manifold, $f : M \to \mathbb{R}^1$ a smooth function, D_M the group of diffeomorphisms of M, and $D_{R^1}(f)$ the group of preserving orientation diffeomorphisms of M that leave invariant the image $f(M)$ of f. There are two natural actions of the groups $D_{R^1}(f) \times D_M$ and D_M on $C^\infty(M, \mathbb{R}^1)$:

$D_{R^1}(f) \times D_M \times C^\infty(M, \mathbb{R}^1) \to C^\infty(M, \mathbb{R}^1)$ \quad (\phi, h) \cdot f = \phi \circ f \circ h^{-1},$

$D_M \times C^\infty(M, \mathbb{R}^1) \to C^\infty(M, \mathbb{R}^1)$ \quad h \cdot f = f \circ h^{-1},

where $\phi \in D_{R^1}(f)$ and $h \in D_M$. Let S_{MR^1} and S_M be corresponding stabilizers and O_{MR^1} and O_M the corresponding orbits of f with respect to these actions. We endow all these spaces with the corresponding C^∞ Whitney topologies.

For $z \in M$ let $C_z^\infty(M)$ be the algebra of germs of smooth functions at z and let $\Delta(f, z)$ be the Jacobi ideal in $C_z^\infty(M)$ generated by germs of partial derivatives of f at z. We put on f the following three conditions:

1. f is constant at every connected component of ∂M;
2. there are only finitely many critical values of f;
3. for every critical point z of f the germ of the function $f(x) - f(z)$ belongs to $\Delta(f, z)$, i.e. there is a vector field F near z such that $f(x) - f(z) = df(F)(x)$.

Condition (3) holds for a very large class of singularities. In particular non-degenerate and simple singularities and even formal series satisfy (3). It is also preserved by stable equivalence of singularities.

Let $D_{R^1}(f)$ be the subgroup of $D_{R^1}(f)$ consisting of diffeomorphisms that also fix every boundary or critical value of f.

Definition. Say that a critical point z of f is essential if for every neighborhood U_z of z there exists a neighborhood V_f of f in $C^\infty(M)$ with C^∞-topology such that every $g \in V_f$ has a critical point in U_z. E.g. if $f(x) = x^2$ and $g(x) = x^3$, then $0 \in \mathbb{R}^1$ is essential for f but not for g.

Theorem \(\text{(A) Suppose that } f \text{ satisfies (1)-(3). Then we have an exact sequence } 1 \to S_M \to S_{MR^1} \to D_{R^1}(f) \to 1, \text{ i.e. the stabilizer } S_{MR^1} \text{ is an extension of } S_M \text{ by } D_{R^1}(f). \text{ This sequence split by a homomorphism } \theta : D_{R^1}(f) \to S_{MR^1}, \text{ whence the embedding } S_M \times \text{id}_M \subset S_{MR^1} \text{ extends to a homeomorphism between } S_M \times D_{R^1}(f) \text{ and } S_{MR^1}. \text{ In particular, } S_M \times \text{id}_M \text{ is a strong deformation retract of } S_{MR^1}.\)

(B) In addition, suppose that every critical level-set of f includes either an essential critical point or a connected component of ∂M. Then the embedding $O_M \subset O_{MR^1}$ extends to a homeomorphism $O_M \times \mathbb{R}^{n-2} \approx O_{MR^1}$, where n is the total number of critical and boundary values of f.